skip to main content


Search for: All records

Creators/Authors contains: "Alvarez-Ponce, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. dos Reis, Mario (Ed.)
    Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins’ melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human–mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Van De Peer, Yves (Ed.)
    Abstract

    Analyses in a number of organisms have shown that duplicated genes are less likely to be essential than singletons. This implies that genes can often compensate for the loss of their paralogs. However, it is unclear why the loss of some duplicates can be compensated by their paralogs, whereas the loss of other duplicates cannot. Surprisingly, initial analyses in mice did not detect differences in the essentiality of duplicates and singletons. Only subsequent analyses, using larger gene knockout data sets and controlling for a number of confounding factors, did detect significant differences. Previous studies have not taken into account the tissues in which duplicates are expressed. We hypothesized that in complex organisms, in order for a gene’s loss to be compensated by one or more of its paralogs, such paralogs need to be expressed in at least the same set of tissues as the lost gene. To test our hypothesis, we classified mouse duplicates into two categories based on the expression patterns of their paralogs: “compensable duplicates” (those with paralogs expressed in all the tissues in which the gene is expressed) and “noncompensable duplicates” (those whose paralogs are not expressed in all the tissues where the gene is expressed). In agreement with our hypothesis, the essentiality of noncompensable duplicates is similar to that of singletons, whereas compensable duplicates exhibit a substantially lower essentiality. Our results imply that duplicates can often compensate for the loss of their paralogs, but only if they are expressed in the same tissues. Indeed, the compensation ability is more dependent on expression patterns than on protein sequence similarity. The existence of these two kinds of duplicates with different essentialities, which has been overlooked by prior studies, may have hindered the detection of differences between singletons and duplicates.

     
    more » « less
  3. Saitou, Naruya (Ed.)
    Abstract

    We present the Codon Statistics Database, an online database that contains codon usage statistics for all the species with reference or representative genomes in RefSeq (over 15,000). The user can search for any species and access two sets of tables. One set lists, for each codon, the frequency, the Relative Synonymous Codon Usage, and whether the codon is preferred. Another set of tables lists, for each gene, its GC content, Effective Number of Codons, Codon Adaptation Index, and frequency of optimal codons. Equivalent tables can be accessed for (1) all nuclear genes, (2) nuclear genes encoding ribosomal proteins, (3) mitochondrial genes, and (4) chloroplast genes (if available in the relevant assembly). The user can also search for any taxonomic group (e.g., “primates”) and obtain a table comparing all the species in the group. The database is free to access without registration at http://codonstatsdb.unr.edu.

     
    more » « less
  4. Golding, Brian (Ed.)
    Abstract Highly expressed proteins tend to evolve slowly, a trend known as the expression level–rate of evolution (E–R) anticorrelation. Whereas the reasons for this anticorrelation remain unclear, the most influential hypotheses attribute it to highly expressed proteins being subjected to strong selective pressures to avoid misfolding and/or misinteraction. In accordance with these hypotheses, work in our laboratory has recently shown that extracellular (secreted) proteins lack an E–R anticorrelation (or exhibit a weaker than usual E–R anticorrelation). Extracellular proteins are folded inside the endoplasmic reticulum, where enhanced quality control of folding mechanisms exist, and function in the extracellular space, where misinteraction is unlikely to occur or to produce deleterious effects. Transmembrane proteins contain both intracellular domains (which are folded and function in the cytosol) and extracellular domains (which complete their folding in the endoplasmic reticulum and function in the extracellular space). We thus hypothesized that the extracellular domains of transmembrane proteins should exhibit a weaker E–R anticorrelation than their intracellular domains. Our analyses of human, Saccharomyces and Arabidopsis transmembrane proteins allowed us to confirm our hypothesis. Our results are in agreement with models attributing the E–R anticorrelation to the deleterious effects of misfolding and/or misinteraction. 
    more » « less
  5. Storz, Jay (Ed.)
    Abstract Despite the importance of effective population size (Ne) in evolutionary and conservation biology, it remains unclear what factors have an impact on this quantity. The Nearly Neutral Theory of Molecular Evolution predicts a faster accumulation of deleterious mutations (and thus a higher dN/dS ratio) in populations with small Ne; thus, measuring dN/dS ratios in different groups/species can provide insight into their Ne. Here, we used an exome data set of 1,550 loci from 45 species of marsupials representing 18 of the 22 extant families, to estimate dN/dS ratios across the different branches and families of the marsupial phylogeny. We found a considerable heterogeneity in dN/dS ratios among families and species, which suggests significant differences in their Ne. Furthermore, our multivariate analyses of several life-history traits showed that dN/dS ratios (and thus Ne) are affected by body weight, body length, and weaning age. 
    more » « less
  6. Larracuente, Amanda (Ed.)
    Abstract Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported. We performed the first explicit test, by comparing estimated census population size and genome size in mammals while incorporating potential covariates and the effect of shared evolutionary history. We found a lack of correlation between census population size and genome size among 199 species of mammals. These results suggest that population size is not the predominant factor influencing genome size and that the Drift-Barrier Hypothesis should be considered provisional. 
    more » « less
  7. null (Ed.)
    X chromosome inactivation (XCI) mediated by differential DNA methylation between sexes is an iconic example of epigenetic regulation. Although XCI is shared between eutherians and marsupials, the role of DNA methylation in marsupial XCI remains contested. Here, we examine genome-wide signatures of DNA methylation across fives tissues from a male and female koala ( Phascolarctos cinereus ), and present the first whole-genome, multi-tissue marsupial ‘methylome atlas’. Using these novel data, we elucidate divergent versus common features of representative marsupial and eutherian DNA methylation. First, tissue-specific differential DNA methylation in koalas primarily occurs in gene bodies. Second, females show significant global reduction (hypomethylation) of X chromosome DNA methylation compared to males. We show that this pattern is also observed in eutherians. Third, on average, promoter DNA methylation shows little difference between male and female koala X chromosomes, a pattern distinct from that of eutherians. Fourth, the sex-specific DNA methylation landscape upstream of Rsx , the primary lnc RNA associated with marsupial XCI, is consistent with the epigenetic regulation of female-specific (and presumably inactive X chromosome-specific) expression. Finally, we use the prominent female X chromosome hypomethylation and classify 98 previously unplaced scaffolds as X-linked, contributing an additional 14.6 Mb (21.5%) to genomic data annotated as the koala X chromosome. Our work demonstrates evolutionarily divergent pathways leading to functionally conserved patterns of XCI in two deep branches of mammals. 
    more » « less
  8. Kuo, Chih-Horng (Ed.)
    Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises ( Gopherus agassizii ). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M . agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M . agassizii strain PS6 T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6 T and 723, we did not detect any SNP between PS6 T and our eight samples. Our whole genome analyses reveal that M . agassizii strain PS6 T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises. 
    more » « less
  9. Abstract

    Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.

     
    more » « less